Abstract—Sampling was done in wet and intermediate zones represented by the Walpita and Makandura research centers, respectively. Eleven land use systems were considered for the study; coconut mono culture (CM), bare land (BL) and coconut multiple cropping. Under coconut multiple cropping, nine different intercrops were selected separately for each zones. The treatments were arranged in a randomized complete block design (RCBD) with three replicates (n = 3). The experiment was conducted under mature baring coconut (>20 years) plantation. Soil Macrofauna was sampled using one transect with three replicates at each land use type using quadrate size (30×30cm) from 0-30 cm depth and visible organisms were handpicked and preserved in 75% alcohol. Dilute plate technique and Spread plate technique was used to determine the soil micro organisms’ density. Those techniques were used to cultivate the fungi and bacteria under and dilution level respectively.
Research identified 12 classes (Crusteacea, Oligochaeta, Hirudinea, Gastropoda, Acarina, Araneida, Scopionida, Chilapoda, Diplopoda, Amphibia, Reptelia) and 14 orders (Hemiptera, Diptera, Coleoptera, Thysanura, Hymenoptera, Lepidotera, Orthoptera, Blattaria, Mantodea, Phasmida, Dermaptera, Isoptera, Siphonaptera, Thysanoptera) of soil organisms. Class insecta shows the high diversity with 14 orders. Colony forming unit (CFU) value of bacteria was higher than that of the fungi value. Findings of intermediate and wet zones’ studies suggested that coconut multiple cropping systems may have high diversity, abundance and functional role of soil organisms. Both zones studies suggested that coconut multiple cropping systems may increase soil moisture factor, respiration rate, biomass carbon content, organic carbon percentage, total nitrogen content, organic matter content and C:N ratio in 0-30cm depth other than the coconut monoculture systems. Overall data of two different zones indicated a significant positive correlation of soil organism diversity, abundance and their functional role with cropping systems. Those data can be used as a reliable basic bio indicator for payments for ecosystem services (PES). It supports to valorize the economic value of the ecological services returned by soil organisms.
Keywords—Soil organisms, diversity, abundance, multiple cropping systems, eco system services, payments for ecosystem services, soil ecology.
Click here to Download Full Paper
AD Publications is a rapidly growing academic publisher in the fields of Engineering, Medical-Health, Environmental Science and Agriculture Research. AD Publications is a registered organization broad-based open access and publishes most exciting researches with respect to the subjects of our journals. The Journals is being indexed and abstracted by all major global current awareness and alerting services.
The organization aims at undertaking, co- coordinating and promoting research and development. It provides professional and academic guidance in the field of basic education, Higher Education as well in the Technical Education. Our Aims is to Promote and support, High Quality basic, Scientific Research and development in fields of Engineering, Medical-Health, Environmental Science and Agriculture Research and to Generate Public awareness, provide advice to scholar’s researchers and communicate research outcomes.
Some Important Links About Research Journal
International Journal
Agriculture Journal
Medical Journal
Environmental Journal
Engineering Journal