A new novel crosslinker with space structure for low-polymer-loading fracturing fluid

Abstract Boron-based crosslinkers are used commonly to increase viscosity and to improve fluid-loss control and proppant transportability of guar and its derivative fluids. Boron crosslinkers are usually preferred because of their ability to reheal after shearing and their favorable environmental properties. In order to reduce both the formation and the proppant-pack damage from polymer residues and to reduce over-all fluid cost, more-efficient crosslinkers capable of crosslinking fluids with reduced polymer loading is of great interest. Previous studies demonstrated that polymer solutions have critical overlap concentration (C*), below which no intermolecular crosslinking leading to increased viscosity can occur. However, recent studies demonstrated that increased crosslinker size or length can lead to the crosslinking of polymer solutions well lower than the C* and can reduce polymer loading without compromising the rheology of the fracturing fluid.

This paper shows the effect of new crosslinkers with space structure capable of interacting with multiple poly-saccharide strands to form crosslinking networks at lower polymer loadings than conventional guar fluids. The crosslinker is formed by the reaction of boric acid and a Polyamine with six-member ring to improve the spatial structure. The formation procedures of the new crosslinker by Boric and six-member Polyamine is very simple, and the synthetic condition is also very mild. The concentration of guar fluid with this new crosslinkers can be reduced by 30%. In addition, the crosslinker reacted with glucose to improve the control of the fluid-viscosity buildup can make the product fit into broader applications. The time of the fluid-viscosity buildup ranges from 15 to 180s. The pH value is very important to the heat resistance characteristics of the fracturing liquid system, the heat resistance characteristics increase with the increase NaOH loading. The polymer residual of the new fracturing system with new crosslinkers is much lower than that with conventional crosslinkers because of the low polymer loading. The cost of new crosslinkers is low because of the low price of raw material and the simple formation procedure and the mild synthetic condition, which is very important for extensive used in the oil field.

Keywords Cross linker Boric acid, Polyamine space structure.

Click here to Download Full Paper

Engineering Journal: A new novel crosslinker with space structure for low-polymer-loading fracturing fluid

AD Publications is a rapidly growing academic publisher in the fields of Engineering, Medical-Health, Environmental Science and Agriculture Research. AD Publications is a registered organization broad-based open access and publishes most exciting researches with respect to the subjects of our journals. The Journals is being indexed and abstracted by all major global current awareness and alerting services.
The organization aims at undertaking, co- coordinating and promoting research and development. It provides professional and academic guidance in the field of basic education, Higher Education as well in the Technical Education. Our Aims is to Promote and support, High Quality basic, Scientific Research and development in fields of Engineering, Medical-Health, Environmental Science and Agriculture Research and to Generate Public awareness, provide advice to scholar’s researchers and communicate research outcomes.

Some Important Links About Research Journal
International Journal
Agriculture Journal
Medical Journal
Environmental Journal
Engineering Journal

Translate »