Characterization of Solid Silicone Fertilizer Produced by Hydrothermal Processes from Silicon-containing Biomasses

Abstract Wastes from agriculture or sewage systems have several properties, such as huge volume, high humidity, and high organic compositions. According to the past studied, sugarcane exocarp, peanut shells and rice husk contain high silicon content. Chemical conversion of biomass feedstock will enhance usage and provide value to agricultural waste. In this research, we applied hydrothermal carbonization to rice husk waste biomass to produce silicon-doped biochar carbon material. From SEM/SEX, FT-IR and XRD results, The silicon content of the synthesized carbon materials changed with increase in carbonization temperature. In addition, the averaged silicon content in carbon material was found:sugarcane exocarp to be 3.27wt %, peanut shells to be 3.01wt %, rice husks to be 7.26wt %. The silicon content of synthesized carbon materials changed with the carbonization temperature. It was speculated that due to silicon content of rice husk, peanut shells and sugarcane exocarp, Raw materials dissolve into reaction water bath and might have bonded to the surface of carbide whilst in hydrothermal carbonization processes. Silicon content of agriculture wastes through hydrothermal carbonization was found to be feasible for the production of silicon-doped Biochars carbon materials. It is suggested that this method be used for recycling of high carbon content waste material for the production of carbon materials. Recycled silicon doped biochars can be used as a base fertilizer for growing vegetables, organic soil conditioner, and also improve the added value of agriculture. Silicon containing biomasses are feasible methods for the recovery and recycling and processing of agricultural waste. Therefore, this study using agricultural waste sugarcane exocarp, peanut shells and rice husk raw carbon silicon fertilizer raw materials production, cultivation hypokalemia, hyponatremia high silicon vegetables Accord research of patients with hyperkalemia (kidney disease).

Keywords agriculture wastes, fertilizer, kidney disease, high silicon vegetables, hyperkalemia.

Click here to Download Full Paper

Characterization of Solid Silicone Fertilizer Produced by Hydrothermal Processes from Silicon-containing Biomasses

AD Publications is a rapidly growing academic publisher in the fields of Engineering, Medical-Health, Environmental Science and Agriculture Research. AD Publications is a registered organization broad-based open access and publishes most exciting researches with respect to the subjects of our journals. The Journals is being indexed and abstracted by all major global current awareness and alerting services.
The organization aims at undertaking, co- coordinating and promoting research and development. It provides professional and academic guidance in the field of basic education, Higher Education as well in the Technical Education. Our Aims is to Promote and support, High Quality basic, Scientific Research and development in fields of Engineering, Medical-Health, Environmental Science and Agriculture Research and to Generate Public awareness, provide advice to scholar’s researchers and communicate research outcomes.

Some Important Links About Research Journal
International Journal
Agriculture Journal
Medical Journal
Environmental Journal
Engineering Journal

Translate »